See how bacterial blood infections in young kids plummeted after vaccines

To celebrate birthdays, my 2- and 4-year-old party animals got vaccinated. Measles, mumps, rubella, chicken pox, diphtheria, tetanus and whooping cough for the older one (thankfully combined into just two shots), and hepatitis A for the younger.

Funnily enough, there were no tears. Just before the shots, we were talking about the tiny bits of harmless germs that would now be inside their bodies, teaching their immune systems how to fight off the harmful germs and keep their bodies healthy. I suspect my girls got caught up in the excitement and forgot to be scared.

As I watched the vaccine needles go in, I was grateful for these medical marvels that clearly save lives. Yet the topic has become fraught for worried parents who want to keep their kids healthy. Celebrities, politicians and even some pediatricians argue that children today get too many vaccines too quickly, with potentially dangerous additives. Those fears have led to reductions in the number of kids who are vaccinated, and along with it, a resurgence of measles and other diseases that were previously kept in check.

Doctors and scientists try to reduce those fears with good, hard data that show vaccines are absolutely some of the safest and most important tools we have to keep children healthy. (Here’s a handy list of papers if you’d like to dig deeper.) A study published online March 10 in Pediatrics shows a particularly compelling piece of data on the impact of vaccines.

In 2000, doctors began using a vaccine called PCV7, which protected children against seven kinds of Streptococcus pneumoniae bacteria. PCV13 came along in 2010, adding six more types of bacteria to the protective roster. These bacteria can cause many different illnesses such as ear infections, meningitis and blood infections called bacteremia. In young children, these infections can sometimes be quite dangerous (and hard to diagnose).
Medical records that span these pre- and post-vaccine time periods, kept by Kaiser Permanente Northern California, offered a chance to see these pneumococcal vaccinations in action. Before the vaccine existed, 74.5 of 100,000 kids ages 3 months to 36 months got pneumococcal bacteremia. After PCV13, that number had plummeted to 3.5 per 100,000. That’s a 95.3 percent reduction.

This plunge is striking, says study coauthor Tara Greenhow, a pediatric infectious disease specialist at Kaiser Permanente Northern California in San Francisco. Along with earlier results, the new study shows that pneumococcal vaccines are highly effective, she says.

As you check out the graph, pay attention to the data points you don’t see. Those are the babies and toddlers who didn’t end up sick, thanks to a vaccine.

How Pluto’s haze could explain its red spots

Pluto may get its smattering of red spots from the fallout of its hazy blue skies, researchers say.

Haze particles from the dwarf planet’s atmosphere settle onto all of Pluto’s surfaces. But some regions may become redder and darker than others because parts of the atmosphere collapse, exposing those spots to more surface-darkening radiation from space, researchers report March 22 at the Lunar and Planetary Science Conference in The Woodlands, Texas.

“The atmospheric haze on Pluto was a spectacular surprise,” says NASA New Horizons mission scientist Andrew Cheng, a physicist at Johns Hopkins University. When the New Horizons spacecraft flew past Pluto in 2015, scientists weren’t expecting to see haze reaching at least 200 kilometers above the dwarf planet’s surface; nor were they expecting to see the haze divided into about 20 delicate and distinct layers (SN Online: 10/15/15).
These discoveries led researchers to suspect that the layers formed as a result of weak winds blowing across Pluto’s surface and over its mountains. Cheng and colleagues describe how the winds would shape the haze layers in a paper accepted in Icarus and posted online February 24 at arXiv.org. The team also explains how the atmosphere may affect the color of the dwarf planet’s surface features.
“Haze particles continually fall out onto the surface and rapidly build up,” Cheng says. This process should effectively “paint” the entire surface a uniform color — but Pluto isn’t a single color. It has strikingly bright and dark terrains, with some of the highest contrast found in the solar system. These dark and light regions form because portions of Pluto’s atmosphere periodically collapse, with air freezing and falling onto the dwarf planet’s surface, he and colleagues suggest.
When a section of the atmosphere collapses, parts of the surface are exposed directly to radiation from space, which would darken the surface particles there, Cheng explains. The richness of the reds, the team says, cannot be explained without some kind of collapse of the atmosphere, which does eventually redevelop.

Observations from NASA’s Kepler spacecraft also support the idea that Pluto’s atmosphere collapses. In fact, as Pluto moves away from the sun, most, if not all, of its atmosphere may collapse onto the dwarf planet’s surface, reported Carey Lisse, also of Johns Hopkins University, at the conference.
Exactly how much of Pluto’s atmosphere freezes out during its year, which lasts for 248 Earth years, isn’t clear. But that is currently being monitored, says Timothy Dowling, an atmospheric scientist at the University of Louisville in Kentucky, who was not involved in the new work. Pluto, he notes, won’t complete the first lap that humans have watched it make around the sun until 2178.

Competing ideas abound for how Earth got its moon

The moon’s origin story does not add up. Most scientists think that the moon formed in the earliest days of the solar system, around 4.5 billion years ago, when a Mars-sized protoplanet called Theia whacked into the young Earth. The collision sent debris from both worlds hurling into orbit, where the rubble eventually mingled and combined to form the moon.

If that happened, scientists expect that Theia’s contribution would give the moon a different composition from Earth’s. Yet studies of lunar rocks show that Earth and its moon are compositionally identical. That fact throws a wrench into the planet-on-planet impact narrative.
Researchers have been exploring other scenarios. Maybe the Theia impact never happened (there’s no direct evidence that the budding planet ever existed). Instead of a single colossal collision, scientists have proposed that a string of impacts created miniature moons largely from terrestrial material. Those mini moons merged over time to form one big moon.

“Multiple impacts just make more sense,” says planetary scientist Raluca Rufu of the Weizmann Institute of Science in Rehovot, Israel. “You don’t need this one special impactor to form the moon.”

But Theia shouldn’t be left on the cutting room floor just yet. Earth and Theia were built largely from the same kind of material, new research suggests, and so had similar compositions. There is no sign of “other” material on the moon, this perspective holds, because nothing about Theia was different.

“I’m absolutely on the fence between these two opposing ideas,” says UCLA cosmochemist Edward Young. Determining which story is correct is going to take more research. But the answer will offer profound insights into the evolution of the early solar system, Young says.
The moon is an oddball. Most of the solar system’s moons are way out among the gas giant planets. The only other terrestrial planet with orbiting satellites is Mars. Its moons, Phobos and Deimos, are small, and the prevailing explanation says they were probably asteroids captured by the Red Planet’s gravity. Earth’s moon is too big for that scenario. If the moon had come in from elsewhere, asteroid-like, it would probably have crashed into Earth or pulled off into space. An alternate explanation dating from the 1800s suggested that moon-forming material flew off of a fast-spinning young Earth like children tossed from an out-of-control merry-go-round. That idea fell out of favor, though, when scientists calculated that the spin speeds required were impossibly fast.
In the mid-1970s, planetary scientists proposed the giant-impact hypothesis and the mysterious planet-sized impactor (named Theia in 2000 for the Greek deity who was mother of the moon goddess Selene). The notion made sense given that the early solar system was like a game of cosmic billiards, with giant space rocks frequently colliding.

A 2001 study of lunar rocks collected during the Apollo missions cast doubt on the giant-impact hypothesis. The research showed that the Earth and moon had surprising similarities. To determine a rock’s origin, scientists measure the relative abundance of oxygen isotopes, which act something like finger-prints at a crime scene. Rocks from Earth and its moon, the scientists found, had seemingly identical mixes of oxygen isotopes. That didn’t make sense if much of the moon’s material came from Theia, not Earth. Using impact simulations, Rufu and colleagues recently estimated that the chance of a Theia collision yielding an Earthlike lunar composition is very slim.

Studies of other elements in Apollo rocks, such as titanium and zirconium, also suggest that the Earth and moon originated from the same material. Young and colleagues recently repeated the oxygen isotope measurements with the latest techniques, hunting for even the slightest difference between Earth and the moon. In January 2016, the team published the results in Science. “We measured the oxygen to the highest precision available,” Young says, “and, gosh, the Earth and moon still look identical.”
Some scientists have built simulations of a giant Theia impact that fashion a moon made mostly from terrestrial material. But the scenarios struggle to match the modern positions and movements of the Earth-moon system.

It’s time to think outside the giant-impact box, some scientists argue. Not one but many impacts contributed to the moon’s formation, Rufu and colleagues proposed January 9 in Nature Geoscience. The moon, they say, has an Earthlike composition because most of the material flung into orbit from these impacts came from Earth.

Mini-moon merger
The multi-impact hypothesis was first put forward in 1989, though scientists at the time didn’t have the computer power to run the simulations that could support it. Rufu and colleagues recently revisited the proposal with computer simulations of multiple impactors, each about a hundredth to a tenth of Earth’s mass, smacking into the early Earth.

Any impactors that were direct hits would have transferred lots of energy into the Earth, excavating terrestrial material into space. Debris from each impact combined over centuries to form a small moon, the simulations show. As more impacts rocked Earth over tens of millions of years, more moons formed. Gravity pulled the moons together, combining them. Over roughly 100 million years, according to this scenario, around 20 mini moons ultimately merged to form one mighty moon (SN Online: 1/9/17).
The multimoon explanation yields the right lunar mix in simulations roughly 20 percent of the time, better than the 1 to 2 percent for the giant-impact hypothesis, the researchers note. “The biggest takeaway is that you cannot explain everything with one shot,” Rufu says.

Planetary scientist Robin Canup finds the scenario convincing. “To me, this appears to be a real contender alongside the one big impactor hypothesis,” says Canup, of the Southwest Research Institute in Boulder, Colo.

Don’t discount Theia
But the Theia hypothesis has recently found fresh support. The odds of Theia resembling Earth’s composition enough to yield an Earthlike moon may be a lot higher than originally thought, new chemical analyses suggest. Most of the material that makes up Earth came from the same source as a type of meteorite called enstatite chondrites, planetary scientist Nicolas Dauphas of the University of Chicago reported January 26 in Nature.

Just as with oxygen, the isotopic mix of various other elements in Earth’s rocks serves as a fingerprint of the rocks’ origins. Some of these elements are iron-lovers, such as ruthenium, which quickly sink toward Earth’s iron-rich core (SN: 8/6/16, p. 22). Any ruthenium found close to Earth’s surface, in the mantle, probably arrived late in Earth’s development. Iron-indifferent elements like calcium and titanium don’t sink to the core; they stay in the mantle. Their isotopes record what went into Earth’s assembly over a much longer period of time. By looking at the iron-lovers and iron-indifferent elements together, Dauphas created a timeline of what types of space rocks added to Earth’s mass and when.
A mix of different rocks, including some resembling enstatite chondrite meteorites, supplied the first 60 percent of Earth’s mass, Dauphas says. The remaining balance came almost exclusively from the meteorites’ precursors. In total, around three-quarters of Earth’s mass came from the same material as enstatite chondrites, Dauphas estimates. If Theia formed at around the same distance from the sun as Earth, then it primarily formed from the same material, and consequently had a similar isotopic composition. So if the moon formed largely from Theia, it makes sense that lunar rocks would have a similar composition to Earth, too.
“Most of the problem is solved, in my opinion, if you admit that the great impactor’s material was no different than that of the [early] Earth,” says cosmochemist Marc Javoy at the Institute of Earth Physics of Paris. “It’s the simplest hypothesis” and would mean that the material gobbled up by budding planets in the inner solar system was fairly uniform in composition, offering insight into the arrangement of material that built the solar system.

The notion that Earth is made from the same material as enstatite chondrites “doesn’t make many people happy,” says geochemist Richard Carlson of the Carnegie Institution for Science in Washington, D.C. The isotopes in Earth’s mantle and the meteorites may match, but the relative abundance of the elements themselves do not, Carlson wrote in a commentary in the Jan. 26 Nature. An additional step in the process is needed to explain this compositional mismatch, he says, such as some of the element silicon getting stashed away in Earth’s core.

“What we have now are a lot of new ideas, and now we need to test them,” says Sarah Stewart, a planetary scientist at the University of California, Davis.

One recently proposed test for the moon’s formation is based on temperature, though it seems to be consistent with both origin stories. A new study comparing the moon’s chemistry with glass forged by a nuclear blast suggests that temperatures during or just after the moon’s inception reached a sizzling 1400° Celsius. That means any plausible moon-forming scenario must involve such high temperatures, researchers reported February 8 in Science Advances.
High heat causes rocks to leach light isotopes of zinc. The green-tinged glass forged in the heat of the 1945 Trinity nuclear test in New Mexico lack light isotopes of zinc, says study coauthor and geologist James Day of the Scripps Institution of Oceanography in La Jolla, Calif. The same goes for lunar rocks. Such high temperatures during or just after the moon’s formation fit with the giant-impact hypothesis, he says. But Rufu calculates that her multi-impact hypothesis also yields high enough temperatures.
So maybe temperature can’t resolve the debate, but probing the composition of Earth and the moon’s deep interiors could prove the mini-moon explanation right, says Rufu. Without a single giant collision, the interiors of the two worlds may not have been well mixed, she predicts. Dauphas says that measuring the compositions of other planets could lend credence to his Earthlike Theia proposal. Mercury and Venus would also have formed largely from the same kind of material as Earth and therefore also have Earthlike compositions, he says. Future studies of the solar system’s inhabitants could confirm or rule out these predictions, but that will require a new chapter of exploration.

What hospitals can do to help keep excess opioids out of communities

To halt the misuse of opioids, it may help to slash the number of pills prescribed, a new study suggests.

Five months after the implementation of new opioid prescription guidelines at a University of Michigan hospital, roughly 7,000 fewer pills went home with patients — a drop that might reduce the risk of accessible pills leading to substance abuse. But the opioid reduction didn’t leave patients who had undergone a routine surgery with more pain, the team reports online December 6 in JAMA Surgery.
“The decline in opioid volume after the intervention was dramatic,” says physician Mark Bicket of Johns Hopkins University School of Medicine, who was not involved in the study.

Around 50 percent of people who misuse opioids get the drugs from a friend or relative for free, while 22 percent obtain them from a doctor, according to the U.S. Department of Health and Human Services. Michael Englesbe, a surgeon at the University of Michigan in Ann Arbor, says that part of doing a better job of managing patients’ pain “will be preventing chronic opioid use after surgical care and making sure fewer pills get into the community.”

Englesbe and colleagues looked at 170 people who had a minimally invasive surgery to remove their gallbladders at the University of Michigan hospital from 2015 to 2016. All had received a prescription for opioids. Of those patients, 100 completed a survey detailing how much of the prescription they took, whether they also used a common painkiller such as ibuprofen or acetaminophen, and how they rated their pain during the first week after surgery.

The 170 individuals typically received a prescription equivalent to 40 to 60 tablets, each containing 5 milligrams of hydrocodone. Seven of the 170 patients requested an opioid prescription refill. The 100 patients who completed the survey used very little of their prescriptions, usually somewhere from one to 12 pills. And their average pain score on a scale of zero (no pain) to 10 (the worst pain imaginable) was five.
Based on this information, guidelines for opioid prescriptions following the same type of surgery were implemented at the hospital in November of 2016. The researchers recommended prescriptions of 15 opioid pills, plus the use of common painkillers.

In the five months after the guidelines went into effect, 200 patients had the gallbladder surgery. Five of those patients asked for an opioid prescription refill. Eighty-six of the patients filled out the survey and reported that they used even less of their prescriptions — from zero to nine pills — than the pre-guidelines survey group. These patients also noted the same average pain score as the previously surveyed group and similar common painkiller use.

The study demonstrates “a relatively simple intervention at the institutional level with promising results,” Bicket says. “Patients receive opioid prescriptions within a health care system, so it makes sense to focus on getting our systems to work better in reducing the unnecessary supply of opioids after surgery.”

Along with this gallbladder procedure, Englesbe and colleagues have developed opioid prescribing recommendations for other routine surgeries, such as appendix removal and hernia repair, for the state of Michigan.

Brains of former football players showed how common traumatic brain injuries might be

There have been hints for years that playing football might come at a cost. But a study this year dealt one of the hardest hits yet to the sport, detailing the extensive damage in football players’ brains, and not just those who played professionally.

In a large collection of former NFL players’ postmortem brains, nearly every sample showed signs of chronic traumatic encephalopathy, or CTE, a disorder diagnosed after death that’s associated with memory loss, emotional outbursts, depression and dementia. Damaging clumps of the protein tau were present in 110 of 111 brains, researchers reported in JAMA (SN: 8/19/17, p. 15).
Those startling numbers captured the attention of both the football-loving public and some previously skeptical researchers, says study coauthor Jesse Mez, a behavioral neurologist at Boston University. “This paper did a lot to bring them around.” And that increased awareness and acceptance has already pushed the research further. “The number of brain donors who have donated since the JAMA paper came out has been astronomical,” Mez says.
As the largest and most comprehensive CTE dataset yet, the results described in JAMA are a necessary step on the path to finding ways to treat or prevent CTE, and not just for professional athletes.
Former college and high school football players’ brains were also examined, though in small numbers. Three of 14 high school players and 48 of 53 college players had signs of CTE. Many of the brains were donated by relatives who suspected something was amiss. That skewed sample makes it difficult to draw broad conclusions. Still, the study raised troublesome questions about the safety of youth sports.

Those questions haven’t been answered, though other research this year provided clues. A study of concussed hockey players ages 11 to 14 suggested that young brains may need more time than is usually allotted to heal after a hard knock. Players had troublesome changes in white matter tracts — nerve cell bundles that carry messages across the brain — three months after injury, despite normal thinking and memory abilities, researchers reported in November in Neurology.

To fully understand CTE, scientists need a way to identify and follow the disease as it progresses. A comprehensive study is now under way to look for CTE markers in live people, and has already hit on one clue.

Compared with postmortem brain tissue taken from healthy people and those with Alzheimer’s, tissue from people who had CTE had higher levels of an inflammation protein called CCL11, Mez and other researchers reported in September in PLOS ONE. In people with CTE, the more years that a person played football, the more CCL11. CCL11 levels, or other factors circulating in cerebrospinal fluid or blood, might one day let scientists monitor the brain health of athletes and others exposed to head trauma.

In marine mammals’ battle of the sexes, vaginal folds can make the difference

The battle of the sexes, at least among certain ocean mammals, may come down to well-placed skin folds, suggests research by Patricia Brennan, an evolutionary biologist at Mount Holyoke College in South Hadley, Mass., and colleagues.

In some species, enhanced male-female genital fit has evolved over time in ways that make mating easier. This is an example of what scientists call congruent evolution. In other species, genital anatomy reflects a battle, as shape and form change over time to give one sex an edge in control of fertilization. Fittingly, this is called antagonistic evolution.
Brennan’s recent collaboration, examining genitalia of porpoises, dolphins and seals, required extra creativity. In previous studies, her team used saline to inflate preserved penises from birds, snakes, sharks and bats. But the tough, fibroelastic penises of the cetaceans would not inflate with saline alone. So her collaborator, Diane Kelly, a penis biomechanics expert at the University of Massachusetts Amherst, suggested pressurizing the saline with a beer keg.

“We looked at each other and said, ‘This could be the best or worst idea we’ve ever had,’ ” Brennan laughs. But it worked. The scientists then created vaginal endocasts with dental silicone and made 3-D mathematical models to examine male-female fit. The team, led by marine mammalogist Dara Orbach of Dalhousie University in Halifax, Canada, described the work in the Oct. 11 Proceedings of the Royal Society B.

Story continues below image
The results show both antagonistic and congruent coevolution. In the model vaginas of short-beaked common dolphins ( Delphinus delphis) and harbor seals ( Phoca vitulina ), penises encountered no physical barriers to penetration.
But in harbor porpoises (Phocoena phocoena) and bottlenosed dolphins (Tursiops truncatus), the scientists found vaginal folds that may help females physically exert choice over sperm. By subtly changing body position during sex, females may use those folds to decrease penetration depth, reducing the likelihood of fertilization by unwanted males, Brennan says.
Brennan’s work has, understandably, made a splash over the years, attracting media coverage and, in 2013, criticism. Conservative news websites and internet trolls attacked her research, calling it “wasteful government spending.” Surprised by the reaction, Brennan responded publicly with an essay in Slate , arguing that basic science moves society forward and is a valid and valuable use of public funds. The experience convinced her that scientists must defend basic science.
Our ability to innovate is undermined without curiosity-driven science, she says. Brennan has developed an outreach program on basic science and plans to keep expanding knowledge of vertebrate genitalia. “In every species we have looked,” she says, “we have found something weird that nobody else knew.” Reason enough to keep discovering.

NASA’s next stop will be Titan or a comet

NASA’s next mission will go where some spacecraft have gone before. The two finalists in the agency’s selection process will return to either Saturn’s moon Titan or comet 67P/Churyumov-Gerasimenko, NASA announced in a press teleconference on December 20.

The Dragonfly mission would launch a drone-like craft to Saturn’s largest moon in 2025 that would land in 2034. NASA’s Cassini-Huygens mission showed that Titan has lakes and rivers of liquid ethane and methane, and may have chemistry that is conducive to life.
“We can test how far prebiotic chemistry has progressed in an environment that we know has the ingredients for life,” said lead investigator Elizabeth Turtle of the Johns Hopkins Applied Physics Laboratory in Laurel, Md.

The other finalist, the Comet Astrobiology Exploration Sample Return (CAESAR) mission, would launch a spacecraft before the end of 2025 to collect a 100-gram sample from the surface of comet 67P, which was mapped by ESA’s Rosetta spacecraft, and return it to Earth in 2038.

Story continues after image
Rosetta’s mapping work “dramatically improves the chances of success for a very difficult activity, which is grabbing a piece of a comet,” said lead investigator Steven Squyres of Cornell University.
Each project will receive funding to further develop the mission concepts. In July 2019, NASA will announce which mission will fly.

Two other missions, one to search for signs of life in the plumes of Saturn’s moon Enceladus and one to land on Venus, will receive funding to tackle specific technology questions to prepare the missions for future competitions.

A robotic arm made of DNA moves at dizzying speed

A new robotic arm made of DNA moves 100,000 times faster than previous DNA machinery.

The DNA nanobot is shaped like a gearshift, with an extendible arm that ranges from 25 to more than 400 nanometers long that’s attached to a 55-by-55-nanometer platform. Researchers remotely control this DNA device, described in the Jan. 19 Science, with electric fields that tug on charged molecules in its arm. Those electric fields help the nanomachine’s arm move much more quickly than previous DNA robots, which relied on chemical interactions between DNA molecules to move (SN: 9/11/10, p. 18).

Friedrich Simmel, a biophysicist at the Technical University of Munich, and his colleagues could swivel their DNA robotic arm 360 degrees in a matter of milliseconds. To lock the arm down in particular positions, the team built latches made of short, single-stranded DNA into the platform.

Such quick, efficient DNA nanobots could someday help move tiny cargo, such as molecules or nanoparticles, in a nanofactory that manufactures new types of materials.

Overlooked air pollution may be fueling more powerful storms

Though they be but little, they are fierce.

Airborne particles smaller than 50 nanometers across can intensify storms, particularly over relatively pristine regions such as the Amazon rainforest or the oceans, new research suggests. In a simulation, a plume of these tiny particles increased a storm’s intensity by as much as 50 percent.

Called ultrafine aerosols, the particles are found in everything from auto emissions to wildfire smoke to printer toner. These aerosols were thought to be too small to affect cloud formation. But the new work suggests they can play a role in the water cycle of the Amazon Basin — which, in turn, has a profound effect on the planet’s hydrologic cycle, researchers report in the Jan. 26 Science.
“I have studied aerosol interactions with storms for a decade,” says Jiwen Fan, an atmospheric scientist at the Pacific Northwest National Laboratory in Richland, Wash., who led the new study. “This is the first time I’ve seen such a huge impact” from these minute aerosols.

Larger aerosol particles greater than 100 nanometers, such as soot or black carbon, are known to help seed clouds. Water vapor in the atmosphere condenses onto these particles, called cloud condensation nuclei, and forms tiny droplets. But water vapor doesn’t condense easily around the tinier particles. For that to be possible, the air must contain even more water vapor than is usually required to form clouds, reaching a very high state of supersaturation.

Such a state is rare — larger aerosols are usually also present to form water droplets, removing that extra water from the atmosphere, Fan says. But in humid places with relatively low background air pollution levels, such as over the Amazon, supersaturation is common, she says.
From 2014 to 2015, Brazilian and U.S. research agencies collaborated on a field experiment to collect data on weather and pollution conditions in the Amazon Basin. As part of the experiment, several observation sites tracked plumes of air pollution traveling from the city of Manaus out across the rainforest. During the warm, wet season, there is little difference day to day in most meteorological conditions over the rainforest, such as temperature, humidity and wind direction, Fan says. So a passing pollution plume represents a distinct, detectable perturbation to the system.

Story continues after image
The international team examined vertical wind motion, or updrafts, and aerosol concentration data from one of these stations from March to May 2014. When a large plume of aerosols with an abundance of ultrafine particles passed by an observation station, the researchers observed a corresponding, more powerful vertical wind motion and heavier rain. Such updrafts intensify storms, helping to drive stronger circulation.

Next, the researchers conducted simulations of an actual storm that occurred on March 17, 2014, matching its temperature, wind and water vapor conditions, as well as a low level of background aerosols in the atmosphere. Then, the team introduced several pollution scenarios to interact with the storm, including no plume and a typical plume from the Manaus metropolis. The results suggested that the ultrafine aerosol particles, in particular, were not only acting as cloud condensation nuclei over the Amazon Basin, but also that the water droplets the aerosols created significantly strengthened the gathering storm.

If the conditions are right, the sheer abundance of the ultrafine particles in such a plume would rapidly create a very large number of cloud droplets. The formation of those droplets would also suddenly release a lot of latent heat — released from a substance as it changes from a vapor to a liquid — into the atmosphere. The heat would rise, creating updrafts and quickly strengthening the storm.

Aside from the Amazon, Fan notes that such pristine, humid conditions can also exist over large swaths of the oceans. One recent study in Geophysical Research Letters that she points to found a link between well-traveled shipping lanes, which would contain abundant exhaust including ultrafine aerosols, and an increase in lightning strikes. “This mechanism may have been at play there,” she says.

Atmospheric scientist Joel Thornton of the University of Washington in Seattle, who led the study on the shipping exhaust, says it’s possible that ultrafine particles play a role in that scenario. “What this paper does is raise the stakes in needing to develop a deeper, more accurate understanding of the sources and fates of atmospheric ultrafine particles,” Thornton says.

Meteorologist Johannes Quaas of the University of Leipzig in Germany, who was not involved in either study, agrees. “It’s a very interesting hypothesis.”

But the observations described in the new study don’t definitively demonstrate that ultrafine aerosols alone drive updrafts, Quaas adds. The weather conditions may appear highly consistent from day to day, but such systems are still highly chaotic. Everything from wind to temperature to how the land surface interacts with incoming solar radiation may be variable, he notes. “In reality, it’s not just the aerosols that change.”