LIGO snags another set of gravitational waves

For a third time, scientists have detected the infinitesimal reverberations of spacetime: gravitational waves.

Two black holes stirred up the spacetime wiggles, orbiting one another and spiraling inward until they fused into one jumbo black hole with a mass about 49 times that of the sun. Ripples from that union, which took place about 3 billion light-years from Earth, zoomed across the cosmos at the speed of light, eventually reaching the Advanced Laser Interferometer Gravitational-Wave Observatory, LIGO, which detected them on January 4.
“These are the most powerful astronomical events witnessed by human beings,” Michael Landry, head of LIGO’s Hanford, Wash., observatory, said during a news conference May 31 announcing the discovery. As the black holes merged, they converted about two suns’ worth of mass into energy, radiated as gravitational waves.
LIGO’s two detectors, located in Hanford and Livingston, La., each consist of a pair of 4-kilometer-long arms. They act as outrageously oversized rulers to measure the stretching of spacetime caused by gravitational waves. According to Einstein’s theory of gravity, the general theory of relativity, massive objects bend the fabric of space and create ripples when they accelerate — for example, when two objects orbit one another. Gravitational ripples are tiny: LIGO is tuned to detect waves that stretch and squeeze the arms by a thousandth of the diameter of a proton. Black hole collisions are one of the few events in the universe that are catastrophic enough to produce spacetime gyrations big enough to detect.
The two black holes that spawned the latest waves were particularly hefty, with masses about 31 and 19 times that of the sun, scientists report June 1 in Physical Review Letters. LIGO’s first detection, announced in February 2016, came from an even bigger duo: 36 and 29 times the mass of the sun (SN: 3/5/16, p. 6). Astrophysicists don’t fully understand how such big black holes could have formed. But now, “it seems that these are not so uncommon, so clearly there’s a way to produce these massive black holes,” says physicist Clifford Will of the University of Florida in Gainesville. LIGO’s second detection featured two smaller black holes, 14 and eight times the mass of the sun (SN: 7/9/16, p. 8).
Weighty black holes are difficult to explain, because the stars that collapsed to form them must have been even more massive. Typically, stellar winds steadily blow away mass as a star ages, leading to a smaller black hole. But under certain conditions, those winds might be weak — for example, if the stars contain few elements heavier than helium or have intense magnetic fields (SN Online: 12/12/16). The large masses of LIGO’s black holes suggest that they formed in such environments.

Scientists also disagree about how black holes partner up. One theory is that two neighboring stars each explode and produce two black holes, which then spiral inward. Another is that black holes find one another within a dense cluster of stars, as massive black holes sink to the center of the clump (SN Online: 6/19/16).

The new detection provides some support for the star cluster theory: The pattern of gravitational waves LIGO observed hints that one of the black holes might be spinning in the opposite direction from its orbit. Like a cosmic do-si-do, each black hole in a pair twirls on its own axis as it spirals inward. Black holes that pair up as stars are likely to have their spins aligned with their orbits. But if the black holes instead find one another in the chaos of a star cluster, they could spin any which way. The potentially misaligned black hole LIGO observed somewhat favors the star cluster scenario. The measurement is “suggestive, but it’s not definite,” says astrophysicist Avi Loeb of Harvard University.

Scientists will need more data to sort out how the black hole duos form, says physicist Emanuele Berti of the University of Mississippi in Oxford. “Probably the truth is somewhere in between.” Various processes could contribute to the formation of black hole pairs, Berti says.

As with previous detections of gravitational waves, the scientists used their measurements to test general relativity. For example, while general relativity predicts that gravitational waves travel at the speed of light, some alternative theories of gravity predict that gravitational waves of different energies travel at different speeds. LIGO scientists found no evidence of such an effect, vindicating Einstein once again.

Now, with three black hole mergers under their belts, scientists are looking forward to a future in which gravitational wave detections become routine. The more gravitational waves scientists detect, the better they can test their theories. “There are already surprises that make people stop and revisit some old ideas,” Will says. “To me that’s very exciting.”

Facial recognition changes a wasp’s brain

Paper wasps have a knack for recognizing faces, and a new study adds to our understanding of what that means in a wasp’s brain.

Most wasps of a given species look the same, but some species of paper wasp (Polistes sp.) display varied colors and markings. Recognizing these patterns is at the core of the wasps’ social interactions.

One species, Polistes fuscatus, is especially good at detecting differences in faces — even better than they are at detecting other patterns. To zero on the roots of this ability, biologist Ali Berens of Georgia Tech and her colleagues set up recognition exercises of faces and basic patterns for P. fuscatus wasps and P. metricus wasps — a species that doesn’t naturally recognize faces but can be trained to do so in the lab. After the training, scientists extracted DNA from the wasps’ brains and looked at which bits of DNA or genes were active.

The researchers found 237 genes that were at play only in P. fuscatus during facial recognition tests. A few of the genes have been linked to honeybee visual learning, and some correspond to brain signaling with the neurotransmitters serotonin and tachykinin. In the brain, picking up on faces goes beyond basic pattern learning, the researchers conclude June 14 in the Journal of Experimental Biology.

It’s possible that some of the same genes also play a broader role in how organisms such as humans and sheep tell one face from another.

Nostalgic Voyager documentary relives first exploration of the solar system

A species gets only one chance to explore its solar system for the first time.

For humans, that chance began 40 years ago this month, when the twin Voyager spacecraft embarked on their “grand tour” of the solar system. A new PBS documentary airing on August 23, The Farthest: Voyager in Space, chronicles their journey to send home the first close-ups of the giant planets and to bring a message about life on Earth to the stars.
Voyagers’ launch dates took advantage of a rare planetary alignment. In 1977, the giant planets — Jupiter, Saturn, Uranus and Neptune — lined up in such a way that a spacecraft could swing past all four in less than 15 years, stealing some gravitational oomph from each world as it went.

That lucky alignment happens only once every 176 years. When NASA’s administrator went to President Richard Nixon to ask for funding for Voyager, he allegedly said: “The last time the planets were lined up like that, President Jefferson was sitting at your desk. And he blew it.”

The Voyagers almost blew it, too. The first craft (Voyager 2, confusingly) launched on August 20, 1977. It experienced so much shaking that its onboard computer — which had as much computing power as a modern car key fob — thought it was failing and put itself in safe mode.
Engineers got it back on track and fixed the problem for Voyager 1’s launch. Then that spacecraft’s rocket had a fuel leak during launch. The craft was within 3½ seconds of running out of gas before it accelerated enough to reach Jupiter.

These nail-biters are mostly told through personal, entertaining anecdotes from Voyager team members. Historical footage from press conferences and newscasts grounds the story in its era. Everyone has big ’70s computers and big ’70s hair. Cuts from shots of the scientists today to their younger selves emphasize how much time has passed. It’s strange that such a high-tech and ambitious mission seems so vintage.

Even the Voyager footage of Jupiter and Saturn coming into view for the first time has a home video quality, especially compared with the sharp, colorful images that spacecraft send back from these planets today. Watching the footage felt like watching video of my parents’ wedding: I recognize everyone, but they look so different.

But the sense of awe that the Voyager images sparked is palpable. At the time, every picture was the best planetary picture ever taken. Much of what is known about the outer solar system now — Jupiter’s moon Io has volcanoes, Europa has an ocean, Neptune has a great churning hurricane that never stops — was glimpsed for the first time with Voyager.

The Voyager spacecraft are still out there, and one may have already left the solar system (SN: 8/23/14, p. 6). Good thing because both craft carry a message in a bottle: the Golden Record.

The Golden Record was a literal record to be played on a phonograph by any aliens that might encounter the spacecraft. The package included a needle, a speaker and graphical instructions on how to play the record. A listener would hear a two-hour sampling of sounds from Earth, including babies crying, whales singing, chimps screeching, trains, thunderstorms, Beethoven, Chuck Berry, greetings in 55 languages and astronomer Carl Sagan’s son saying, “Hello from the children of planet Earth.”

The Farthest weaves the story of exploration with the story of the making of the record. The record’s producers and champions recount how they pulled the whole thing together in just six weeks. What to leave in — a map to Earth, in case the aliens want to visit — and what to leave out — full frontal nudity — was fiercely debated.

At times, refrains of “Wow!” and “It was a first” feel repetitive. Some of the stock footage and spacecraft animations are a little cheesy. But The Farthest is a tender tribute, tinged with nostalgia and existential awe. For those like me, who weren’t alive or aware when the first pictures of Jupiter came back, The Farthest offers a sense of what we missed.

Protect little ones’ eyes from the sun during the eclipse

As luck (or exceptionally precise astronomical modeling) would have it, my new, small Oregon town happens to lie in the upcoming eclipse’s path of totality. For nearly two glorious minutes on August 21, we will look up and see the unworldly sight of the moon completely blocking the sun.

To put it mildly, Oregon is going bonkers. Local radio is warning of gas shortages and apocalyptic traffic. Schools and businesses are closing. Emergency services are ramping up for the expected onslaught. Every local store has a pile of eclipse glasses near the register, yours for a very reasonable $2. (Oregonians don’t price gouge.)

I bought glasses (the good kind) for my family and put them in a high drawer. But as a parent to a 2-year-old, I realize that my eclipse prep can’t stop there. I’ve seen what the girl does to regular sunglasses, so I’ve got a few ideas to preschooler-proof these eclipse glasses for her.

Except for during the brief window of totality (when the sun’s surface is completely blacked-out), you shouldn’t look directly at the sun during an eclipse without wearing proper, eclipse-specific eyewear. The powerful light can cause extensive, sometimes permanent eye damage, a condition called solar retinopathy.

As you may imagine, it might be hard to impress this risk on children. Take the cases of these three Australian kids. After watching the 2012 partial eclipse of the sun through binoculars, a 10-year-old boy hurt his eyes. Examinations three months after the injury revealed persistent damage. Another boy, this one 8 years old, stared at the same partial eclipse directly. His eyes showed signs of harm five months later. And an 11-year-old girl who peeked at the 2012 transit of Venus with only her right eye also suffered persistent eye damage.

Those cautionary examples, described in 2015 in the Journal of the American Association for Pediatric Ophthalmology and Strabismus, made me want to duct tape my children’s eclipse glasses to their heads, mummy-style.

In lieu of that, I’m opting for super thick and stretchy fabric bands that I’ll staple and tape to the arms of the glasses. I’m also experimenting with a headband to limit movement on the top of the head, and perhaps even a paper plate taped around the front of the glasses to block incidental light. You could even take a note from 1963 schoolchildren, who put big boxes over their heads to see a projection of an eclipse.
I was happy to see that my DIY ideas aren’t totally off: Amid its wealth of eclipse information, the American Astronomical Society recommends modifying eclipse glasses with elastic or tape around the back so they sit firmly on small faces.

Of course, if you have a little Houdini who regularly squirms out of constricting clothes, you may consider any tweaking to be too risky. A simple pinhole projector, which doesn’t require looking anywhere near the sun, might be better.

Clearly, eye protection is something to take seriously. But don’t let that worry keep you and your children from seeing this once-in-a-lifetime celestial event. It’s the type of natural phenomenon that people — especially really young ones — can grab onto and understand. After all, kids love shadows, and this is going to be one heck of a shadow.