Sound-reflecting shelters inspired ancient rock artists

Ancient rock artists were drawn to echo chambers. Members of early farming communities in Europe painted images in rock-shelters where sounds bounced off walls and into the surrounding countryside, researchers say.

Rock-shelters lacking such sound effects were passed up, at least in the central Mediterranean, report archaeologist Margarita Díaz-Andreu of the University of Barcelona and colleagues in the July Journal of Archaeological Science. In landscapes with many potential rock art sites, “the few shelters chosen to be painted were those that have special acoustic properties,” Díaz-Andreu says.
Some hunter-gatherer and farming groups studied over the past couple centuries believed in spirits that dwell in rock and reveal their presence via echoes. But acoustic evidence of special echoing properties at rock art sites is rare.

Díaz-Andreu’s team studied two rock art sites in 2015 and 2016. Baume Brune is a kilometer-long cliff in southeastern France. Of 43 naturally formed cavities in the cliff, only eight contain paintings, which include treelike figures and horned animals. Rock art in the Valle d’Ividoro, on Italy’s east coast, appears in an 800-meter-long section of a gorge. Only three of its 11 natural shelters contain painted images. Researchers generally date these French and Italian paintings to between roughly 6,500 and 5,000 years ago, several thousand years after the Stone Age had ended, Díaz-Andreu says.

To investigate the acoustics of the decorated and unadorned shelters, the researchers developed a new technique for determining the direction, intensity and timing of sound waves arriving at a particular point from every direction. A special microphone connected to a digital recorder measured the acoustic properties of any echoes set off by balloons popped just outside each rock-shelter. This setup was moved to various spots outside the caves to record the acoustic reach of reflected popping sounds. Echo measurements in France were taken at distances ranging from 22 to 36 meters from cliff shelters. Due to rougher terrain in Italy, measurements there were taken at distances ranging from 77 to 300 meters.
Then, the acoustic data were transformed into 3-D, slow-motion depictions of echoes, represented by moving circles, indicating where sound reflections originated. At both sites, shelters with rock paintings displayed better echoing properties than undecorated shelters, Díaz-Andreu says. And in each location, the shelter that best reflected echoes had the highest number of paintings.
“This novel technique shows a clear correlation between audible echoes and decorated shelters,” says music archaeologist Riitta Rainio of the University of Helsinki in Finland, who did not participate in the new study.

Echoes that bounce off steep rock cliffs bordering three lakes in northern Finland also attracted ancient artists, Rainio says. She and her colleagues took acoustic measurements at Finland’s painted cliffs from 2013 to 2016. Microphones placed on boats positioned at different spots on nearby lakes measured sound waves generated, in most trials, by a starter’s pistol. These Finnish paintings date to between around 7,200 and 3,000 years ago, Rainio says.

In some cases, echoes reflect directly from cliff paintings. “That, and possible drumming figures painted on the cliffs, suggest that sound played some role in rituals at these sites,” Rainio says. Her team will report its findings in an upcoming Journal of Archaeological Method and Theory.

Creators of older Stone Age cave art also appear to have focused on sites where echoes abounded, says archaeologist Paul Pettitt of Durham University in England. For instance, many roughly 14,000- to 12,000-year-old animal drawings and engravings at France’s Niaux Cave cluster in a cathedral-like chamber where sounds echo loudly.

“The new study provides convincing evidence that echoes, which were scientifically inexplicable to prehistoric people, played a determining role in how art was created,” Pettitt says.

Fewer big rogue planets roam the galaxy, recount shows

Big, rogue planets — ones without parent stars — are rare.

A new census of free-floating Jupiter-mass planets determined that these worlds are a tenth as common as previous estimates suggested. The results appear online July 24 in Nature.

Planets can go rogue in two ways: They can get kicked out of their parent planetary systems or form when a ball of gas and dust collapses (SN: 4/4/15, p. 22).

In the new study, Przemek Mróz of the Astronomical Observatory of the University of Warsaw and colleagues estimated the number of large, rogue planets in our galaxy using a technique called microlensing. When an object with a mass of a planet passes in front of a distant, background star, the gravity of the planet acts as a gravitational magnifying glass. It distorts and focuses the light, giving up the planet’s existence.
Mróz and colleagues looked at 2,617 microlensing events recorded between 2010 and 2015 and determined which were caused by a rogue planet. For every typical star, called main sequence stars, there are 0.25 free-floating Jupiter-mass planets, the analysis suggests.

The new result sharply contrasts an estimate published in 2011, which suggested that rogue Jupiters are almost twice as common as main sequence stars. About 90 percent of stars in the universe are main sequence stars, so if that estimate were accurate, there should be a lot of free-floating Jupiters.

“That result changed our conceptual framework of the universe just a little bit,” says astronomer Michael Liu of the University of Hawaii in Honolulu. It challenged long-held ideas about how planets go rogue because the known methods wouldn’t generate enough planets to account for all the wanderers.

The 2011 result was based on a relatively small sample of microlensing events, only 474. Since then, infrared telescope images haven’t detected as many free-floating planets as expected. “Over the years, serious doubts were cast over the claims of a large population of Jupiter-mass free-floaters,” Mróz says.

David Bennett, coauthor of the 2011 study, agrees that the new census failed to find evidence for a large population of Jupiter-mass rogue planets. He notes, however, that the new data do reveal four times as many Jupiter-mass failed stars called brown dwarfs than predicted in the original census. So some of the rogues that were originally classified as planets may, in fact, be failed stars. Bennett, of NASA’s Goddard Space Flight Center in Greenbelt, Md., and colleagues are working on a new analysis of potential rogues with nearly 3,000 microlensing events and plan to compare their results with those from the new census.
Liu says the latest census is much more in line with theories of how planets form. Most rogues should be Earth-mass or a little heavier. Those lighter planets get tossed out of their planetary systems much easier than behemoths like Jupiter. Still, the smaller planets are harder to detect.

The new microlensing analysis did identify several events in which stars brightened and dimmed in less than half a day. Such short events hint at the existence of Earth-mass free-floaters because smaller planets with less gravity should brighten a distant star more briefly than more massive stars. Determining whether those small planets are really rogue and counting how many there are will take better telescopes, the team notes.

Shhhh! Some plant-eating dinos snacked on crunchy critters

Some dinosaurs liked to cheat on their vegetarian diet.

Based on the shape of their teeth and jaws, large plant-eating dinosaurs are generally thought to have been exclusively herbivorous. But for one group of dinosaurs, roughly 75-million-year-old poop tells another story. Their fossilized droppings, or coprolites, contained tiny fragments of mollusk and other crustacean shells along with an abundance of rotten wood, researchers report September 21 in Scientific Reports. Eating the crustaceans as well as the wood might have given the dinosaurs an extra dose of nutrients during breeding season to help form eggs and nourish the embryos.
“Living herd animals do occasionally turn carnivore to fulfill a particular nutritional need,” says vertebrate paleontologist Paul Barrett of the Natural History Museum in London. “Sheep and cows are known to eat carcasses or bone when they have a deficiency in a mineral such as phosphorus or calcium, or if they’re pregnant or ill.” But the discovery that some plant-eating dinos also ate crustaceans is the first example of this behavior in an extinct herbivore, says Barrett, who was not involved in the new study.

Ten years ago, paleoecologist Karen Chin of the University of Colorado Boulder described finding large pieces of rotted wood in dino dung. The coprolites were within a layer of rock in Montana, known as the Two Medicine Formation, dating to between 80 million and 74 million years ago. That layer also contained numerous fossils of Maiasaura, a type of large, herbivorous duck-billed dinosaur, or hadrosaur (SN: 8/9/14, p. 20).
Chin wondered whether the wood itself was the dino’s real dietary target. “The coprolites in Montana were associated with the nesting grounds of the Maiasaura ,” she says. “I suspected that the dinosaurs were after insects in the wood. But I never found any insects in the coprolites there.”

Her hunch wasn’t too far off. Now she’s found evidence of some kind of crustaceans in dino poop. The new evidence comes from an 860-meter-thick layer of rock in Utah known as the Kaiparowits Formation, which dates to between 76.1 million and 74 million years ago. Ten of the 15 coprolites that Chin and her team examined contained tiny fragments of shell that were scattered throughout the dung. They were too small to identify by species, and may have been crabs, insects or some other type of shelled animal, Chin says. Based on the scattering of shell fragments, the animals were certainly eaten along with the wood rather than being later visitors to the dung heap.

Since bones from hadrosaurs are especially abundant in the Kaiparowits Formation, Chin suspects those kinds of dinos deposited the dung. Other large herbivores, such as three-horned ceratopsians and armored ankylosaurs, also roamed the area (SN: 6/24/17, p. 4).

The crustacean diet cheat may have been a seasonal event, related perhaps to breeding to obtain extra nutrients, Chin and colleagues say.

But how often — or why — the dinosaurs ate the shelled critters is hard to prove from the fossil dung alone, Barrett says. Herbivore coprolites are rare in the fossil record because a diet of leaves and other green plant material doesn’t leave a lot of hard material to preserve (unlike bones in carnivore dung). Coprolites with crustaceans, on the other hand, are more likely to get fossilized — and that preferential preservation might make it appear that this behavior was more frequent than it actually was. “These kinds of things give neat snapshots of specific behaviors that those animals are doing at any one time,” he adds. “But it’s difficult to build that into a bigger picture.”

Colliding black holes are reported for a fifth time

Spacetime ripples from black holes are becoming routine.

For a fifth time, scientists have reported the detection of two colliding black holes via their gravitational waves, tiny vibrations that warp the fabric of spacetime. Unlike previous gravitational wave detections, which were heralded with news conferences often featuring panels of scientists squinting at journalists under bright lights, this was a low-key announcement. The event, caught on June 8, 2017, by the Advanced Laser Interferometer Gravitational-Wave Observatory, LIGO, was unceremoniously unveiled in a paper published online November 15 at arXiv.org.

With masses 7 and 12 times that of the sun, the pair of black holes was the lightest LIGO has spotted so far. The lack of fanfare over the detection signals a shift. Scientists are now aiming to collect data from many black hole crashes. That data can be analyzed to answer questions about the population as a whole, such as how two black holes get paired up in the first place.

Excess antielectrons aren’t from nearby dead stars, study says

New observations of the whirling cores of dead stars have deepened the mystery behind a glut of antimatter particles raining down on Earth from space.

The particles are antielectrons, also known as positrons, and could be a sign of dark matter — the exotic and unidentified culprit that makes up the bulk of the universe’s mass. But more mundane explanations are also plausible: Positrons might be spewed from nearby pulsars, the spinning remnants of exploded stars, for example. But researchers with the High-Altitude Water Cherenkov Observatory, or HAWC, now have called the pulsar hypothesis into question in a paper published in the Nov. 17 Science.

Although the new observations don’t directly support the dark matter explanation, “if you have a few alternatives and cast doubt on one of them, then the other becomes more likely,” says HAWC scientist Jordan Goodman of the University of Maryland in College Park.

Earth is constantly bathed in cosmic rays, particles from space that include protons, atomic nuclei, electrons and positrons. Several experiments designed to detect the showers of spacefaring particles have found more high-energy positrons than expected (SN: 5/4/13, p. 14), and astrophysicists have debated the excess positrons’ source ever since. Dark matter particles annihilating one another could theoretically produce pairs of electrons and positrons, but so can other sources, such as pulsars.
It was uncertain, though, whether pulsars’ positrons would make it to Earth in numbers significant enough to explain the excess. HAWC researchers tested how positrons travel through space by measuring gamma rays, or high-energy light, from two nearby pulsars — Geminga and Monogem — around 900 light-years away. Those gamma rays are produced when energetic positrons and electrons slam into low-energy light particles, producing higher-energy radiation.
The size and intensity of the resulting gamma-ray glow indicated that the positrons slowly dissipated away from their pulsar birthplaces, getting bogged down by magnetic fields that permeate the galaxy and twist up the particles’ trajectories. That sluggish departure suggests the particles wouldn’t have made it all the way to Earth, the researchers conclude, and therefore couldn’t explain the excess.

Astrophysicist Dan Hooper of Fermilab in Batavia, Ill., disagrees. He still thinks pulsars are the best explanation for the rogue antimatter. The gamma ray measurements are just one method for studying how cosmic ray particles propagate through space. Other methods indicate that the pulsars’ positrons should be able to make the trek across the galaxy swiftly enough to get to Earth, he says. “I have every confidence that those particles are now reaching the solar system.”

Ruling out pulsars still wouldn’t point the finger at dark matter. “I think they’ve made a good case that these pulsars are not the source,” says astrophysicist Gregory Tarlé of the University of Michigan in Ann Arbor. Instead, Tarlé thinks that scientists can explain the excess positrons by better understanding what happens as cosmic ray particles travel through space. Protons interacting with the interstellar medium — particles that permeate the spaces between stars — could produce positrons that would explain the observations, without invoking either dark matter or pulsars.

The conflict leaves physicists with their work cut out for them. “In order to prove that it’s dark matter, you have to prove that it’s not something ordinary,” says HAWC researcher Brenda Dingus of Los Alamos National Laboratory in New Mexico. Although the new result disfavors the most obvious ordinary candidates, Dingus says, other possibilities are still in the running. “We need to look harder.”

Why some birds of paradise have ultrablack feathers

Some birds of paradise really know how to work their angles. Tilted, microscopic filaments in some of the showy birds’ black feathers make that plumage look much darker than traditional black feathers, researchers report online January 9 in Nature Communications.

Dakota McCoy, an evolutionary biologist at Harvard University, and colleagues measured how much light each type of black feather absorbs. Superblack feathers absorb up to 99.95 percent of light that shines directly on them, while traditional black feathers absorb up to 96.8 percent, the researchers found.
Using scanning electron microscopy and nano-CT scanning, the team observed that ultrablack feathers have ragged, spike-studded barbules that curve upward at a roughly 30-degree angle to the tip, creating an array of deep, curved cavities. Traditional black feathers are smoother and lack such detailed microstructures. These spikes and pits scatter light multiple times, allowing for more light absorption and darker plumage, the scientists say. Even when the researchers dusted the feathers with gold, the darkest ones still retained their blackness, while traditional black plumes looked gilded in SEM images.

Superblack patches probably evolved to “exaggerate the perceived brilliance of adjacent color patches” during mating displays, the researchers write.

Will Smith narrates ‘One Strange Rock,’ but astronauts are the real stars

“The strangest place in the whole universe might just be right here.” So says actor Will Smith, narrating the opening moments of a new documentary series about the wonderful unlikeliness of our own planet, Earth.

One Strange Rock, premiering March 26 on the National Geographic Channel, is itself a peculiar and unlikely creation. Executive produced by Academy Award–nominated Darren Aronofsky and by Jane Root of the production company Nutopia and narrated by Smith, the sprawling, ambitious 10-episode series is chock-full of stunningly beautiful images and CGI visuals of our dynamic planet. Each episode is united by a theme relating to Earth’s history, such as the genesis of life, the magnetic and atmospheric shields that protect the planet from solar radiation and the ways in which Earth’s denizens have shaped its surface.
The first episode, “Gasp,” ponders Earth’s atmosphere and where its oxygen comes from. In one memorable sequence, the episode takes viewers on a whirlwind journey from Ethiopia’s dusty deserts to the Amazon rainforest to phytoplankton blooms in the ocean. Dust storms from Ethiopia, Smith tells us, fertilize the rainforest. And that rainforest, in turn, feeds phytoplankton. A mighty atmospheric river, fueled by water vapor from the Amazon and heat from the sun, flows across South America until it reaches the Andes and condenses into rain. That rain erodes rock and washes nutrients into the ocean, feeding blooms of phytoplankton called diatoms. One out of every two breaths that we take comes from the photosynthesis of those diatoms, Smith adds.
As always, Smith is an appealing everyman. But the true stars of the series may be the eight astronauts, including Chris Hadfield and Nicole Stott, who appear throughout the series. In stark contrast to the colorful images of the planet, the astronauts are filmed alone, their faces half in shadow against a black background as they tell stories that loosely connect to the themes. The visual contrast emphasizes the astronauts’ roles as outsiders who have a rare perspective on the blue marble.
“Having flown in space, I feel this connection to the planet,” Stott told Science News . “I was reintroduced to the planet.” Hadfield had a similar sentiment: “It’s just one tiny place, but it’s the tiny place that is ours,” he added.
Each astronaut anchors a different episode. In “Gasp,” Hadfield describes a frightening moment during a spacewalk outside the International Space Station when his eyes watered. Without gravity, the water couldn’t form into teardrops, so it effectively blinded him. To remove the water, he was forced to allow some precious air to escape his suit. It’s a tense moment that underscores the pricelessness of the thin blue line, visible from space, that marks Earth’s atmosphere. “It contains everything that’s important to us,” Hadfield says in the episode. “It contains life.”

Stott, meanwhile, figures prominently in an episode called “Storm.” Instead of a weather system, the title refers to the rain of space debris that Earth has endured throughout much of its history — including the powerful collision that formed the moon (SN: 4/15/17, p. 18). Stott describes her own sense of wonder as a child, watching astronauts land on our closest neighbor — and how the travels of those astronauts and the rocks they brought back revealed that Earth and the moon probably originated from the same place.

It’s glimpses like these into the astronauts’ lives and personalities — scenes of Hadfield strumming “Space Oddity” on a guitar, for example, or Stott chatting with her son in the family kitchen — that make the episodes more than a series of beautiful and educational IMAX films. Having been away from the planet for a short time, the astronauts see Earth as precious, and they convey their affection for it well. Stott said she hopes that this will be the ultimate takeaway for viewers, for whom the series may serve as a reintroduction to the planet they thought they knew so well. “I hope that people will … appreciate and acknowledge the significance of [this reintroduction],” she said, “that it will result in an awareness and obligation to take care of each other.”
Editor’s note: This story was updated on March 19, 2018, to add a mention of a second executive producer.

Venus may be home to a new kind of tectonics

THE WOODLANDS, Texas — Venus’ crust is broken up into chunks that shuffle, jostle and rotate on a global scale, researchers reported in two talks March 20 at the Lunar and Planetary Science Conference.

New maps of the rocky planet’s surface, based on images taken in the 1990s by NASA’s Magellan spacecraft, show that Venus’ low-lying plains are surrounded by a complex network of ridges and faults. Similar features on Earth correspond to tectonic plates crunching together, sometimes creating mountain ranges, or pulling apart. Even more intriguing, the edges of the Venusian plains show signs of rubbing against each other, also suggesting these blocks of crust have moved, the researchers say.
“This is a new way of looking at the surface of Venus,” says planetary geologist Paul Byrne of North Carolina State University in Raleigh.

Geologists generally thought rocky planets could have only two forms of crust: a stagnant lid as on the moon or Mars — where the whole crust is one continuous piece — or a planet with plate tectonics as on Earth, where the surface is split into giant moving blocks that sink beneath or collide with each other. Venus was thought to have one solid lid (SN: 12/3/11, p. 26).

Instead, those options may be two ends of a spectrum. “Venus may be somewhere in between,” Byrne said. “It’s not plate tectonics, but it ain’t not plate tectonics.”

While Earth’s plates move independently like icebergs, Venus’ blocks jangle together like chaotic sea ice, said planetary scientist Richard Ghail of Imperial College London in a supporting talk.
Ghail showed similar ridges and faults around two specific regions on Venus that resemble continental interiors on Earth, such as the Tarim and Sichuan basins in China. He named the two Venusian plains the Nuwa Campus and Lada Campus. (The Latin word campus translates as a field or plain, especially one bound by a fence, so he thought it was fitting.)
Crustal motion may be possible on Venus because the surface is scorching hot (SN: 3/3/18, p. 14). “Those rocks already have to be kind of gooey” from the high temperatures, Byrne said. That means it wouldn’t take a lot of force to move them. Venus’ interior is also probably still hot, like Earth’s, so convection in the mantle could help push the blocks around.

“It’s a bit of a paradigm shift,” says planetary scientist Lori Glaze of NASA’s Goddard Space Flight Center, who was not involved in the new work. “People have always wanted Venus to be active. We believe it to be active, but being able to identify these features gives us more of a sense that it is.”

The work may have implications for astronomers trying to figure out which Earth-sized planets in other solar systems are habitable (SN: 4/30/16, p. 36). Venus is almost the same size and mass as the Earth. But no known life exists on Venus, where the average surface temperature is 462° Celsius and the atmosphere is acidic. Scientists have long speculated that the planet’s apparent lack of plate tectonics might play a role in making the planet so seemingly uninhabitable.

What’s more, the work also underlines the possibility that planets go through phases of plate tectonics (SN: 6/25/16, p. 8). Venus could have had plate tectonics like Earth 1 billion or 2 billion years ago, according to a simulation presented at the meeting by geophysicist Matthew Weller of the University of Texas at Austin.

“As Venus goes, does that predict where the Earth is going in the relatively near future?” he wondered.