Volcanic rocks help turn carbon emissions to stone — and fast

A new technique turns climate-warming carbon emissions to stone. In a test program in Iceland, more than 95 percent of the carbon dioxide injected into basaltic lava rocks mineralized into solid rock within two years. This surprisingly fast transformation quarantined the CO2 from the atmosphere and could ultimately help offset society’s greenhouse gas emissions, scientists report in the June 10 Science.

“It’s working, it’s feasible and it’s fast enough to be a permanent solution for storing CO2 emissions,” says study coauthor Juerg Matter, a geochemist at the University of Southampton in England.
Many existing carbon storage schemes pump CO2 underground, though the approach has been prone to leaks. Targeting basalt, the cooled remains of volcanic outpourings, may offer an advantage over other types of rock. As much as 25 percent of basalt is made up of elements that react with CO2 to form solid carbonate minerals such as limestone, a process that occurs naturally during rock weathering. Since it was thought that this mineralization process takes hundreds to thousands of years in most rock, it seemed far too slow to be useful in combating near-term climate change.
In Iceland, Matter and colleagues blended groundwater with 230 tons of CO2 emissions from a geothermal power plant to create a kind of seltzer water. The researchers then injected the mixture 400 to 800 meters belowground into basaltic rock. After about two years, the team collected samples of the deep rock — and discovered that almost all of the CO2 had mineralized.

At $17 per ton, mineralizing carbon emissions is roughly twice as expensive as existing storage methods, though doesn’t require long-term monitoring to prevent leaks, Matter says. Additionally, the approach only requires water and basalt, he says, and “we have enough basalt globally to take care of all anthropogenic CO2 emissions, theoretically.”

Another research group’s work backs up the new findings. Peter McGrail, a geochemist at the Pacific Northwest National Laboratory in Richland, Wash., and colleagues conducted similar tests using pure CO2 without water. The as-yet-unpublished findings revealed rapid mineralization similar to that reported by Matter and colleagues, McGrail says.

Properly timed exercise aids memory

If you want to lock new information into your brain, try working up a sweat four hours after first encountering it.

This precisely timed trick, described June 16 in Current Biology, comes courtesy of 72 people who learned the location of 90 objects on a computer screen. Some of these people then watched relaxing nature videos, while others worked up a sweat on stationary bikes, alternating between hard and easy pedaling for 35 minutes. This workout came either soon after the cram session or four hours later.

Compared with both the couch potatoes and the immediate exercisers, the people who worked out four hours after their learning session better remembered the objects’ locations two days later. The delayed exercisers also had more consistent activity in the brain’s hippocampus, an area important for memory, when they remembered correctly. That consistency indicates that the memories were stronger, Eelco van Dongen of the Donders Institute in the Netherlands and colleagues propose.

The researchers don’t yet know how exercise works its memory magic, but they have a guess. Molecules sparked by aerobic exercise, including the neural messenger dopamine and the protein BDNF, may help solidify memories by reorganizing brain cell connections.

Tough gun laws in Australia eliminate mass shootings

Australia has seen zero mass shootings in the 20 years since it enacted strict gun control laws and a mandatory gun buyback program, researchers report June 22 in JAMA.

Key to this success is probably the reduction in people’s exposure to semiautomatic weapons, Johns Hopkins University health policy researcher Daniel Webster writes in an accompanying editorial.

“Here’s a society that recognized a public safety threat, found it unacceptable, and took measures to address the problem,” Webster says.
In April 1996, a man with two semiautomatic rifles shot and killed 35 people in Tasmania and wounded at least 18 others. Two months after the shooting, known as the Port Arthur massacre, Australia began implementing a comprehensive set of gun regulations, called the National Firearms Agreement.

The NFA is famous for banning semiautomatic long guns (including the ones used by the Port Arthur shooter), but, as Webster points out, it also made buying other guns a lot harder too. People have to document a “genuine need,” pass a safety test, wait a minimum of 28 days, have no restraining orders for violence and demonstrate good moral character, among other restrictions, Webster writes.

“In Australia, they look at someone’s full record and ask, ‘Is this a good idea to let this person have a firearm?’” Webster says. In the United States, “we do pretty much the opposite. The burden is on the government to show that you are too dangerous to have a firearm.”

Australia also initiated a mandatory gun buyback program in 1996, leading to the purchase and destruction of more than 650,000 semiautomatic and pump-action rifles and shotguns.

Simon Chapman of the University of Sydney and colleagues tallied up mass shootings before and after the NFA and analyzed 35 years of mortality data from the Australian Bureau of Statistics.
SUBSCRIBE
From 1979 to 1996, Australia had 13 fatal mass shootings involving five or more victims (not including the shooter), Chapman and colleagues report. From 1997 to May 2016, the country has had none. (Three shootings, however, have killed three or four victims.) Chapman’s team also found that the rate of gun deaths dropped rapidly after 1996 but can’t confirm that this reduction is due to the gun laws.