Fewer big rogue planets roam the galaxy, recount shows

Big, rogue planets — ones without parent stars — are rare.

A new census of free-floating Jupiter-mass planets determined that these worlds are a tenth as common as previous estimates suggested. The results appear online July 24 in Nature.

Planets can go rogue in two ways: They can get kicked out of their parent planetary systems or form when a ball of gas and dust collapses (SN: 4/4/15, p. 22).

In the new study, Przemek Mróz of the Astronomical Observatory of the University of Warsaw and colleagues estimated the number of large, rogue planets in our galaxy using a technique called microlensing. When an object with a mass of a planet passes in front of a distant, background star, the gravity of the planet acts as a gravitational magnifying glass. It distorts and focuses the light, giving up the planet’s existence.
Mróz and colleagues looked at 2,617 microlensing events recorded between 2010 and 2015 and determined which were caused by a rogue planet. For every typical star, called main sequence stars, there are 0.25 free-floating Jupiter-mass planets, the analysis suggests.

The new result sharply contrasts an estimate published in 2011, which suggested that rogue Jupiters are almost twice as common as main sequence stars. About 90 percent of stars in the universe are main sequence stars, so if that estimate were accurate, there should be a lot of free-floating Jupiters.

“That result changed our conceptual framework of the universe just a little bit,” says astronomer Michael Liu of the University of Hawaii in Honolulu. It challenged long-held ideas about how planets go rogue because the known methods wouldn’t generate enough planets to account for all the wanderers.

The 2011 result was based on a relatively small sample of microlensing events, only 474. Since then, infrared telescope images haven’t detected as many free-floating planets as expected. “Over the years, serious doubts were cast over the claims of a large population of Jupiter-mass free-floaters,” Mróz says.

David Bennett, coauthor of the 2011 study, agrees that the new census failed to find evidence for a large population of Jupiter-mass rogue planets. He notes, however, that the new data do reveal four times as many Jupiter-mass failed stars called brown dwarfs than predicted in the original census. So some of the rogues that were originally classified as planets may, in fact, be failed stars. Bennett, of NASA’s Goddard Space Flight Center in Greenbelt, Md., and colleagues are working on a new analysis of potential rogues with nearly 3,000 microlensing events and plan to compare their results with those from the new census.
Liu says the latest census is much more in line with theories of how planets form. Most rogues should be Earth-mass or a little heavier. Those lighter planets get tossed out of their planetary systems much easier than behemoths like Jupiter. Still, the smaller planets are harder to detect.

The new microlensing analysis did identify several events in which stars brightened and dimmed in less than half a day. Such short events hint at the existence of Earth-mass free-floaters because smaller planets with less gravity should brighten a distant star more briefly than more massive stars. Determining whether those small planets are really rogue and counting how many there are will take better telescopes, the team notes.

Nostalgic Voyager documentary relives first exploration of the solar system

A species gets only one chance to explore its solar system for the first time.

For humans, that chance began 40 years ago this month, when the twin Voyager spacecraft embarked on their “grand tour” of the solar system. A new PBS documentary airing on August 23, The Farthest: Voyager in Space, chronicles their journey to send home the first close-ups of the giant planets and to bring a message about life on Earth to the stars.
Voyagers’ launch dates took advantage of a rare planetary alignment. In 1977, the giant planets — Jupiter, Saturn, Uranus and Neptune — lined up in such a way that a spacecraft could swing past all four in less than 15 years, stealing some gravitational oomph from each world as it went.

That lucky alignment happens only once every 176 years. When NASA’s administrator went to President Richard Nixon to ask for funding for Voyager, he allegedly said: “The last time the planets were lined up like that, President Jefferson was sitting at your desk. And he blew it.”

The Voyagers almost blew it, too. The first craft (Voyager 2, confusingly) launched on August 20, 1977. It experienced so much shaking that its onboard computer — which had as much computing power as a modern car key fob — thought it was failing and put itself in safe mode.
Engineers got it back on track and fixed the problem for Voyager 1’s launch. Then that spacecraft’s rocket had a fuel leak during launch. The craft was within 3½ seconds of running out of gas before it accelerated enough to reach Jupiter.

These nail-biters are mostly told through personal, entertaining anecdotes from Voyager team members. Historical footage from press conferences and newscasts grounds the story in its era. Everyone has big ’70s computers and big ’70s hair. Cuts from shots of the scientists today to their younger selves emphasize how much time has passed. It’s strange that such a high-tech and ambitious mission seems so vintage.

Even the Voyager footage of Jupiter and Saturn coming into view for the first time has a home video quality, especially compared with the sharp, colorful images that spacecraft send back from these planets today. Watching the footage felt like watching video of my parents’ wedding: I recognize everyone, but they look so different.

But the sense of awe that the Voyager images sparked is palpable. At the time, every picture was the best planetary picture ever taken. Much of what is known about the outer solar system now — Jupiter’s moon Io has volcanoes, Europa has an ocean, Neptune has a great churning hurricane that never stops — was glimpsed for the first time with Voyager.

The Voyager spacecraft are still out there, and one may have already left the solar system (SN: 8/23/14, p. 6). Good thing because both craft carry a message in a bottle: the Golden Record.

The Golden Record was a literal record to be played on a phonograph by any aliens that might encounter the spacecraft. The package included a needle, a speaker and graphical instructions on how to play the record. A listener would hear a two-hour sampling of sounds from Earth, including babies crying, whales singing, chimps screeching, trains, thunderstorms, Beethoven, Chuck Berry, greetings in 55 languages and astronomer Carl Sagan’s son saying, “Hello from the children of planet Earth.”

The Farthest weaves the story of exploration with the story of the making of the record. The record’s producers and champions recount how they pulled the whole thing together in just six weeks. What to leave in — a map to Earth, in case the aliens want to visit — and what to leave out — full frontal nudity — was fiercely debated.

At times, refrains of “Wow!” and “It was a first” feel repetitive. Some of the stock footage and spacecraft animations are a little cheesy. But The Farthest is a tender tribute, tinged with nostalgia and existential awe. For those like me, who weren’t alive or aware when the first pictures of Jupiter came back, The Farthest offers a sense of what we missed.

Protect little ones’ eyes from the sun during the eclipse

As luck (or exceptionally precise astronomical modeling) would have it, my new, small Oregon town happens to lie in the upcoming eclipse’s path of totality. For nearly two glorious minutes on August 21, we will look up and see the unworldly sight of the moon completely blocking the sun.

To put it mildly, Oregon is going bonkers. Local radio is warning of gas shortages and apocalyptic traffic. Schools and businesses are closing. Emergency services are ramping up for the expected onslaught. Every local store has a pile of eclipse glasses near the register, yours for a very reasonable $2. (Oregonians don’t price gouge.)

I bought glasses (the good kind) for my family and put them in a high drawer. But as a parent to a 2-year-old, I realize that my eclipse prep can’t stop there. I’ve seen what the girl does to regular sunglasses, so I’ve got a few ideas to preschooler-proof these eclipse glasses for her.

Except for during the brief window of totality (when the sun’s surface is completely blacked-out), you shouldn’t look directly at the sun during an eclipse without wearing proper, eclipse-specific eyewear. The powerful light can cause extensive, sometimes permanent eye damage, a condition called solar retinopathy.

As you may imagine, it might be hard to impress this risk on children. Take the cases of these three Australian kids. After watching the 2012 partial eclipse of the sun through binoculars, a 10-year-old boy hurt his eyes. Examinations three months after the injury revealed persistent damage. Another boy, this one 8 years old, stared at the same partial eclipse directly. His eyes showed signs of harm five months later. And an 11-year-old girl who peeked at the 2012 transit of Venus with only her right eye also suffered persistent eye damage.

Those cautionary examples, described in 2015 in the Journal of the American Association for Pediatric Ophthalmology and Strabismus, made me want to duct tape my children’s eclipse glasses to their heads, mummy-style.

In lieu of that, I’m opting for super thick and stretchy fabric bands that I’ll staple and tape to the arms of the glasses. I’m also experimenting with a headband to limit movement on the top of the head, and perhaps even a paper plate taped around the front of the glasses to block incidental light. You could even take a note from 1963 schoolchildren, who put big boxes over their heads to see a projection of an eclipse.
I was happy to see that my DIY ideas aren’t totally off: Amid its wealth of eclipse information, the American Astronomical Society recommends modifying eclipse glasses with elastic or tape around the back so they sit firmly on small faces.

Of course, if you have a little Houdini who regularly squirms out of constricting clothes, you may consider any tweaking to be too risky. A simple pinhole projector, which doesn’t require looking anywhere near the sun, might be better.

Clearly, eye protection is something to take seriously. But don’t let that worry keep you and your children from seeing this once-in-a-lifetime celestial event. It’s the type of natural phenomenon that people — especially really young ones — can grab onto and understand. After all, kids love shadows, and this is going to be one heck of a shadow.

Shhhh! Some plant-eating dinos snacked on crunchy critters

Some dinosaurs liked to cheat on their vegetarian diet.

Based on the shape of their teeth and jaws, large plant-eating dinosaurs are generally thought to have been exclusively herbivorous. But for one group of dinosaurs, roughly 75-million-year-old poop tells another story. Their fossilized droppings, or coprolites, contained tiny fragments of mollusk and other crustacean shells along with an abundance of rotten wood, researchers report September 21 in Scientific Reports. Eating the crustaceans as well as the wood might have given the dinosaurs an extra dose of nutrients during breeding season to help form eggs and nourish the embryos.
“Living herd animals do occasionally turn carnivore to fulfill a particular nutritional need,” says vertebrate paleontologist Paul Barrett of the Natural History Museum in London. “Sheep and cows are known to eat carcasses or bone when they have a deficiency in a mineral such as phosphorus or calcium, or if they’re pregnant or ill.” But the discovery that some plant-eating dinos also ate crustaceans is the first example of this behavior in an extinct herbivore, says Barrett, who was not involved in the new study.

Ten years ago, paleoecologist Karen Chin of the University of Colorado Boulder described finding large pieces of rotted wood in dino dung. The coprolites were within a layer of rock in Montana, known as the Two Medicine Formation, dating to between 80 million and 74 million years ago. That layer also contained numerous fossils of Maiasaura, a type of large, herbivorous duck-billed dinosaur, or hadrosaur (SN: 8/9/14, p. 20).
Chin wondered whether the wood itself was the dino’s real dietary target. “The coprolites in Montana were associated with the nesting grounds of the Maiasaura ,” she says. “I suspected that the dinosaurs were after insects in the wood. But I never found any insects in the coprolites there.”

Her hunch wasn’t too far off. Now she’s found evidence of some kind of crustaceans in dino poop. The new evidence comes from an 860-meter-thick layer of rock in Utah known as the Kaiparowits Formation, which dates to between 76.1 million and 74 million years ago. Ten of the 15 coprolites that Chin and her team examined contained tiny fragments of shell that were scattered throughout the dung. They were too small to identify by species, and may have been crabs, insects or some other type of shelled animal, Chin says. Based on the scattering of shell fragments, the animals were certainly eaten along with the wood rather than being later visitors to the dung heap.

Since bones from hadrosaurs are especially abundant in the Kaiparowits Formation, Chin suspects those kinds of dinos deposited the dung. Other large herbivores, such as three-horned ceratopsians and armored ankylosaurs, also roamed the area (SN: 6/24/17, p. 4).

The crustacean diet cheat may have been a seasonal event, related perhaps to breeding to obtain extra nutrients, Chin and colleagues say.

But how often — or why — the dinosaurs ate the shelled critters is hard to prove from the fossil dung alone, Barrett says. Herbivore coprolites are rare in the fossil record because a diet of leaves and other green plant material doesn’t leave a lot of hard material to preserve (unlike bones in carnivore dung). Coprolites with crustaceans, on the other hand, are more likely to get fossilized — and that preferential preservation might make it appear that this behavior was more frequent than it actually was. “These kinds of things give neat snapshots of specific behaviors that those animals are doing at any one time,” he adds. “But it’s difficult to build that into a bigger picture.”

New questions about Arecibo’s future swirl in the wake of Hurricane Maria

When Hurricane Maria’s 250-kilometer-per-hour winds slammed into Puerto Rico on September 20, they spurred floods, destroyed roads and flattened homes across the island. A week-and-a-half later, parts of the island remain without power, and its people are facing a humanitarian crisis.

The storm also temporarily knocked out one of the best and biggest eyes on the sky: the Arecibo Observatory, some 95 kilometers west of San Juan. The observatory’s 305-meter-wide main dish was until recently the largest radio telescope in the world (a bigger one, the FAST radio telescope, opened in China in 2016).

As news trickled out over the past week, it appeared that the damage may not be as bad as initially reported. The observatory is conserving fuel, but plans to resume limited astronomy observations September 29, deputy director Joan Schmelz tweeted earlier that day. “#AreciboScience is coming back after #MariaPR.”

But the direct whack still raises the issue of when – and even whether – to repair the observatory: Funding for it has repeatedly been on the chopping block despite its historic contributions to astronomy.

Arecibo’s recent work includes searching for gravitational waves by the effect they have on the clocklike regularity of dead stars called pulsars; watching for mysterious blasts of energy called fast radio bursts (SN Online: 12/21/16); and keeping tabs on near-Earth asteroids.

It played a key role in the history of the search for extraterrestrial intelligence: In 1974, astronomers Frank Drake, Jill Tarter and Carl Sagan used it to send messages to any extraterrestrial civilizations that might be listening (SN Online: 2/13/15). It was also the telescope that, in 1992, discovered the first planets outside the solar system.

Arecibo also holds a special place in my personal history: Watching actress Jodie Foster use the giant dish to listen for aliens in the movie Contact when I was 13 cemented my desire to study astronomy. I chose to go to Cornell University for undergrad in part because the university managed Arecibo at the time, and I hoped I might get to go there. (I never did, but my undergrad adviser, Martha Haynes, uses Arecibo to study the distribution of galaxies in the local universe.) And one of the first science stories I ever had published was about Cornell professors testifying to the National Science Foundation, which owns Arecibo, to defend the observatory’s funding.
Ten years after that story ran in the Cornell Daily Sun, Arecibo’s funding situation is still in doubt. It’s not clear how the recent damage will affect its future.

Telescope operator Ángel Vázquez sent the first damage reports via short-wave radio on September 21. A line feed antenna, used to receive and transmit radio waves to study the Earth’s ionosphere, broke off and fell onto the observatory’s main dish, damaging some of its panels. A second, 12-meter dish was thought to have been destroyed entirely.

But the smaller dish survived with only minor damage. “Initial reports said it had just been blown away, but it turned out that was not correct,” says Nicholas White of the Universities Space Research Association, which co-operates the observatory with SRI International, a nonprofit headquartered in Menlo Park, Calif., and Metropolitan University in San Juan, Puerto Rico. “That looks like it’s fine, although obviously we have to get up there and check it out.”

On September 23, observatory director Francisco Córdova posted a picture to the observatory’s Facebook page of two staff members standing in front of the big telescope dish with an outstretched Puerto Rican flag. “Still standing after #HurricaneMaria!” the post declares. “We suffered some damages, but nothing that can’t be repaired or replaced!”
The line feed antenna is a big loss, but it should be replaceable eventually, White says. And the damage to the main dish is fixable. Among the tasks was to get inside the Gregorian dome — the golf ball‒like structure suspended over the giant dish — and make sure the reflectors within it were aligned correctly. (Those reflectors were knocked askew by Hurricane George in 1998, says Cornell radio astronomer Donald Campbell.)

Meantime, Arecibo staff, who managed to safely shelter in place during the storm, “have been showing up for work, funnily enough,” White says. “People just want to get back to normal.”

But normal is also a state of uncertainty. The NSF, which foots $8.3 million of the observatory’s nearly $12 million a year operating costs, has been trying to offload their responsibility for it for several years. (NASA covers the balance.) And NSF’s agreement with the three groups that jointly maintain and operate the observatory runs out in March 2018. In 2016, the NSF called for proposals for other organizations to take over after that.

The NSF can’t estimate yet how expensive the repairs will be or how long they will take to complete, so it’s reserving comment on how the damage will affect decisions about the observatory’s future. “We need to make a complete assessment,” says NSF program director Joseph Pesce.

Personally, I hope the observatory remains open, both for science and for inspiration. I’m still waiting for a reply to that 1974 Arecibo message.

Colliding black holes are reported for a fifth time

Spacetime ripples from black holes are becoming routine.

For a fifth time, scientists have reported the detection of two colliding black holes via their gravitational waves, tiny vibrations that warp the fabric of spacetime. Unlike previous gravitational wave detections, which were heralded with news conferences often featuring panels of scientists squinting at journalists under bright lights, this was a low-key announcement. The event, caught on June 8, 2017, by the Advanced Laser Interferometer Gravitational-Wave Observatory, LIGO, was unceremoniously unveiled in a paper published online November 15 at arXiv.org.

With masses 7 and 12 times that of the sun, the pair of black holes was the lightest LIGO has spotted so far. The lack of fanfare over the detection signals a shift. Scientists are now aiming to collect data from many black hole crashes. That data can be analyzed to answer questions about the population as a whole, such as how two black holes get paired up in the first place.

Why some birds of paradise have ultrablack feathers

Some birds of paradise really know how to work their angles. Tilted, microscopic filaments in some of the showy birds’ black feathers make that plumage look much darker than traditional black feathers, researchers report online January 9 in Nature Communications.

Dakota McCoy, an evolutionary biologist at Harvard University, and colleagues measured how much light each type of black feather absorbs. Superblack feathers absorb up to 99.95 percent of light that shines directly on them, while traditional black feathers absorb up to 96.8 percent, the researchers found.
Using scanning electron microscopy and nano-CT scanning, the team observed that ultrablack feathers have ragged, spike-studded barbules that curve upward at a roughly 30-degree angle to the tip, creating an array of deep, curved cavities. Traditional black feathers are smoother and lack such detailed microstructures. These spikes and pits scatter light multiple times, allowing for more light absorption and darker plumage, the scientists say. Even when the researchers dusted the feathers with gold, the darkest ones still retained their blackness, while traditional black plumes looked gilded in SEM images.

Superblack patches probably evolved to “exaggerate the perceived brilliance of adjacent color patches” during mating displays, the researchers write.

A single atom can gauge teensy electromagnetic forces

Zeptonewton
ZEP-toe-new-ton n.
A unit of force equal to one billionth of a trillionth of a newton.

An itty-bitty object can be used to suss out teeny-weeny forces.

Scientists used an atom of the element ytterbium to sense an electromagnetic force smaller than 100 zeptonewtons, researchers report online March 23 in Science Advances. That’s less than 0.0000000000000000001 newtons — with, count ‘em, 18 zeroes after the decimal. At about the same strength as the gravitational pull between a person in Dallas and another in Washington, D.C., that’s downright feeble.
After removing one of the atom’s electrons, researchers trapped the atom using electric fields and cooled it to less than a thousandth of a degree above absolute zero (–273.15° Celsius) by hitting it with laser light. That light, counterintuitively, can cause an atom to chill out. The laser also makes the atom glow, and scientists focused that light into an image with a miniature Fresnel lens, a segmented lens like those used to focus lighthouse beams.

Monitoring the motion of the atom’s image allowed the researchers to study how the atom responded to electric fields, and to measure the minuscule force caused by particles of light scattering off the atom, a measly 95 zeptonewtons.